SCHEME OF COURSE WORK

Course Title	OPERATIONS RESEARCH							
Course Code	19ME21P1	L P C	:2 0 2					
Program:	M.Tech.							
Specialization:	Thermal Engineering							
Semester	II							

Course Outcomes (COs):

At the end of the course, the student will be able to

l	1	Formulate a linear programming problem for given problem and solve this problem by using
		Simplex techniques
	2	Evaluate sensitivity analysis to the given input data in order to know sensitive of the output.
	3	Apply the concept of non-linear programming for solving the problems involving non-linear constraints and objectives.
	4	Solve deterministic and Probabilistic inventory control models for known and unknown demand of the items
	5	Apply the dynamic programming to solve problems of discrete and continuous variables

Program Outcomes (POs)

At the end of the program, the students in CAD/CAM will be able to

РО	Program Outcome (PO)
Code	
PO1	exhibit in-depth knowledge in thermal engineering specialization
PO2	think critically and analyse complex engineering problems to make creative advances in theory and practice
PO3	solve problem, think originally and arrive at feasible and optimal solutions with due consideration to public health and safety of environment
PO4	use research methodologies, techniques and tools, and will contribute to the development of technological knowledge
PO5	apply appropriate techniques, modern engineering tools to perform modeling of complex engineering problems with knowing the limitations
PO6	understand group dynamics, contribute to collaborative multidisciplinary scientific research
PO7	demonstrate knowledge and understanding of engineering and management principles and apply the same with due consideration to economical and financial factors
PO8	communicate complex engineering problems with the engineering community and society, write and present technical reports effectively
PO9	engage in life-long learning with a high level of enthusiasm and commitment to improve knowledge and competence continuously
PO10	exhibit professional and intellectual integrity, ethics of research and scholarship and will realize the responsibility towards the community
PO11	examine critically the outcomes of actions and make corrective measures

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	S	М	М		М						
CO-2	S	S	S	М		М	М		Μ			
CO-3	S	S	S	S		Μ	Μ		М			
CO-4	S	М							М			
CO-5	М		М	Μ		Μ			Μ			

Course Outcome versus Program Outcomes:

S - Strongly correlated, *M* - *Moderately* correlated, *Blank* - *No* correlation *S* - Strongly correlated, *M* -*Moderately* correlated, *Blank* - *No* correlation

Teaching-Learning and Evaluation

Week	Topic/Contents	Course Outcomes	Sample Questions	Teaching- Learning Strategy	Assessment Method & Schedule
1	Optimization techniques	CO1			
2	model formulation and models	CO1	1. Explain the various types of Optimization techniques.	Lectures	
3	simplex techniques	CO1	 Discuss about simplex techniques. Explain about inventory control models 	PPT, Seminar	
4	. inventory control models	CO1	r in the second s		
5	Formulation of a LPP - graphical solution for LPP	CO2	1. Using graphical method, the optimum solution of the LPP of maximizing z =		
6	revised simplex method	CO2	$10x+15y$ subject to the $2x+y\leq 26$, $x+2y\leq 28$,		
7	duality theory, dual simplex method	CO2	 y-x≤5 and x≥0, y≥0 is obtained as x= and y = Write the dual of the following LPP Maximize z = 5x1+3x2 subject to the constraints: 3x1+5x2≤15, 5x1+2x2≤10, where x1≥0 and x2≥0 Discuss the effect of variation or changes in objective function coefficients Cj's for a given LPP. 	•	
8	sensitivity analysis - parametric programming	CO2		Lectures PPT, Seminar	Seminar (week 3-7)
9	Mid-Test 1	CO-1, CO-2			

10	Nonlinear programming problem - Kuhn-Tucker conditions CPM/PERT	CO3 CO3	1. Writ any three differences between PERT and CPM. 2. Maximize $Z = -x_1^2 - x_2^2 - x_3^2 + 4x_1 + 6x_2$ Subject to the constraints $x_1 + x_2 \le 2$ $2x_1 + 3x_2 \le 12$ $x_1, x_2 \ge 0$ Using Kuhn-Tucker conditions	Lectures PPT, Seminar	
12	single server and multiple server models deterministic inventory models - probabilistic inventory control	CO4 CO4	 Define total float, free float and independent float Derive Wilson harris formula for EOQ. Give an average arrival rate of 20 per hour there are two options for a customer: A single channel with service rate 22 customers per hour or a two service channel with service rate of 11 customers per hour. 	Lectures PPT, Seminar	
14	models geometric Programming	CO4	3. Define degree of difficulty.		
15	Single and multi-channel problems, sequencing models,	CO5	 Explain about bellmans principle of optimality. Define total elapsed time, idle time and no passing rule. Explain about principle of dominance 	Lectures PPT, Seminar	Seminar (week 11-16)
16	dynamic programming, flow in networks,	CO5			
17	elementary graph theory, game theory simulation	CO5			
18	Mid-Test 2	CO-3, CO-4, CO-5			
19/20	END EXAM	All COs			